

BASILICA COMPLICATION CASE

Dr Sam Radhakrishnan MD, FRCPC

Director, Adult Interventional Cardiology Area of Focused Competency Training Program, University of Toronto Director, Cardiac Catheterization Labs, Schulich Heart Centre Medical Director, Transcatheter Aortic Valve Implantation Program, Schulich Heart Centre Assistant Professor of Medicine, University of Toronto

Innovations in Interventional Cardiology Summit Montreal October 25, 2019

MOST

Presented by A Greenbaum, SHDS 2018

Predicting coronary obstruction is complicated

Table 1. Possible Risk Factors for Coronary Obstruction AfterValve-in-Valve Implantation

Presented by A Greenbaum, SHDS 2018

VTC for patients <4mm

Presented by A Greenbaum, SHDS 2018

The BASILICA concept

BIOPROSTHETIC AORTIC SCALLOP INTENTIONAL LACERATION TO PREVENT LATROGENIC CORONARY ARTERY OBSTRUCTION

Translation to clinical care

Presented by A Greenbaum, SHDS 2018

BASILICA IDE trial

- Prospective, single arm, multicenter, early feasibility study (EFS) IDE sponsored by NHLBI
- Investigator-initiated, on-site data monitoring, core lab analysis, and CEAC* adjudicated end points
- 30 subjects at 4 sites
- Inclusion criteria
 - Undergoing on-label TAVR for native severe aortic stenosis or bioprosthetic valve failure
 - Deemed likely to suffer coronary artery obstruction
- Exclusion criteria
 - Excessive target leaflet calcification or masses
- Primary efficacy endpoint:
 - Successful traversal and laceration of intended leaflets with no coronary obstruction, AND
 - Successful TAVR without emergency surgery or re-intervention
- Primary safety endpoint:
 - Freedom from VARC-2 MACE through 30 days

Primary endpoint

	Per patient n=30	Per leaflet n=37
Successful BASILICA traversal and laceration	28 (93%)	35 (95%)
Survival	30 (100%)	-
Successful first TAVR device implantation	30 (100%)	-
Coronary obstruction	0 (0%)	-
Emergency surgery or reintervention related to BASILICA TAVR	0 (0%)	
Technical success	28 (93%)	-

In-hospital outcomes

	n=30		
In-hospital mortality	1 (3%) Multi-organ failure, bospice, death day 17		
Stroke	3 (10%)		
Myocardial infarction	0		
Coronary obstruction	0		
AKI stage 2/3	1 (3%)		
Major bleeding or vascular complication	2 (7%) 1 iliac artery dissection requiring stent 1 access site hematoma requiring blood transfusion		
Permanent pacemaker	2 (6%)		
Emergency surgery	0		
PVL requiring re-intervention	0		

2019

Khan JM et al, JACC Intv 2019

Case

- 83F
- Asthma/HTN/PPM
- 2000 AVR Freestyle #23
 - Prolonged post op course
 - Reoperation for bleeding
 - Slow rehabilitation
- 2018 recurrent CHF
 - NYHA III
 - Failing AVR with severe Al/global LV dysfunction/ RVSP 55 mm Hg
- Assessed by two surgical centres as high/prohibitive risk for redo
 - Patient herself declined redo SAVR
 - DNR no ICU, no prolonged intubation

CT measurements

- Annulus
 - Area 335mm2 Perimeter 64.2 mm. Diameters (20.4-20.6mm)
- Sinus diameters 24-26 mm
- Coronary Heights
 - LCA 7.5, RCA 12 mm
- VTC (assuming 20 mm annulus diameter)
 - LCA 3.5 RCA 3.0
- STJ diameter 25.5 mm
- STJ Height 16.5 mm

Pre MDCT, MPR image Leaflets extend above both coronary ostium

Evolut PRO/ Evolut R Patient Selection

Valve Size Selection	Evolut R/PRO TAV			Evolut R TAV
Size	23 mm	26 mm	29 mm	34 mm
Annulus Diameter	18 – 20 mm	20 – 23 mm	23 – 26 mm	26 - 30 mm
Annulus Perimeter (π x Diameter)	56.5 – 62.8 mm	62.8 – 72.3 mm	72.3 – 81.7 mm	81.7 – 94.2 mm
Sinus of Valsalva Diameter (Mean)	≥ 25 mm	≥ 27 mm	≥ 29 mm	≥ 31 mm
Sinus of Valsalva Height (Mean)	≥ 15 mm			≥ 16 mm

BASILICA Basics

INTERVENTIONS FOR VALVULAR DISEASE AND HEART FAILURE

Bioprosthetic or native aortic scallop intentional laceration to prevent iatrogenic coronary artery obstruction. Part 1: how to evaluate patients for BASILICA

Ikki Komatsu, MD; G. Burkhard Mackensen, MD, PhD; Gabriel S. Aldea, MD; Mark Reisman, MD; Danny Dvir*, MD

INTERVENTIONS FOR VALVULAR DISEASE AND HEART FAILURE

Bioprosthetic or native aortic scallop intentional laceration to prevent iatrogenic coronary artery obstruction. Part 2: how to perform BASILICA

ished

Jaa April 2019

Ikki Komatsu, MD; G. Burkhard Mackensen, MD, PhD; Gabriel S. Aldea, MD; Mark Reisman, MD; Danny Dvir*, MD

Pre coronary, aorta, leg angiograms

VTSTJ/ VTC for SapeinS3 23mm

RCA VTC 1.5

LCA VTC 1.5

VTSTJ/ VTC for SapeinS320mm

LCA VTC 3.5 RCA VTC 3.0 Double Oblique (MPR) 🜩 0 Durso **3**mensio

Angiogram

Access; Rt: 18Fr Gore Lt: 8Fr,6Fr double puncture

Pre LCC Side/Front view

-AL3.5 8Fr guiding catheter -25mm Snare guide in 6Fr MP LAO 37 CRA 36

Usually start with higher risk coronary cusp first RAO 25 CAU 33

Traverse catheter positioning

-AL3.5 8Fr guiding catheter+ 5FR JR4.0 120cm, AstatoXS20mm 300cm, Piggyback

Pachyderm Shaped Dedicated Guides

J Lisko, TVT 2019

LCC traversal, wire snaring

Traverse with 30W

LCC injection -good center and deep traversal

Pre RCC Side/Front view

RAO 40 CAU 33

LAO 2 CAU 10

Traverse catheter positioning

-MB1 8Fr guiding catheter+ 5FR JR4.0 120cm, AstatoXS20mm 300cm, Piggyback

RCC traversal, wire snaring

Traverse with 30W

Bring V shape

Double V shape

Lt->Rt leaflet laceration with 50W

Presented by A Greenbaum, SHDS 2018

THV implantation

High vs Deep implant

Tough Lessons Learned

- SWEAT THE DETAILS
- Attention to THV structure/dimensions
 - Skirt!
 - 3D modelling?
- Attention to depth
- ?Consider commissural alignment possibilities
- Release in:
 - 'ideal position' AND
 - 'ideal imaging angle'

BASILICA COMPLICATION CASE

Dr Sam Radhakrishnan MD, FRCPC

Director, Adult Interventional Cardiology Area of Focused Competency Training Program, University of Toronto Director, Cardiac Catheterization Labs, Schulich Heart Centre Medical Director, Transcatheter Aortic Valve Implantation Program, Schulich Heart Centre Assistant Professor of Medicine, University of Toronto

Innovations in Interventional Cardiology Summit Montreal October 25, 2019

